® P.E.S. INSTITUTE OF TECHNOLOGY

(BANGALORE SOUTH CAMPUS)

PES DEPARTMENT OF ELECTRONICS AND COMMUNICATION
2" INTERNAL TEST (SCHEME AND SOLUTION)
EVEN SEMESTER 2017

Faculty: NEETHUP S Semester: Il

Subject: DSP SD

Sub. Code: 14ESP22

NO: Mark
S
1 Butterworth approximation 8

Squared magnitude response of a Butterworth low-pass filter is defined as follows

_ 2 1
H @) = ————7 1
1+ @ (3.1)
mscﬂie
where =27 J _radian frequency, Pecete =2 T Ficate constant scaling frequency, V-

order of the filter.

Some properties of the Butterworth filters are:
|H(_j - CI)| =1
|G mﬂhas amaximumat @ =0

e Thefirst 2 & — lderivatives of (3.1) are equal to zero at @ = 0, This is why
Butterworth filters are known as maximally flat filters.

gain at DC is equal to 1;

Poles locations
Using property (1.26) expression (3.1) can be rearranged to the form

HG @) H-J @) =y

207
I
ms ciale

Given © =4 @this expression can be written as follows
1
Hiz) H(-s5) = 7
o (3.2)
J mscﬂje
Function H(s)- H(-5) has <-4 poles and doesn't have any finite zeros. It is easy to see that if

*tis a pole of (3.2), then ~ ®iisalso a pole of (3.2). In order to find the poles of transfer

function 7% that satisfy (3.2), we have to select one pole from each pair (%75 # = L. ¥
of the poles of expression (3.2). As it was mentioned before, the poles of a valid filter have to
have negative real parts.
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The poles of (3.2) can be found as roots of equation

20
a ] --1 33)

J' ' mm.ie

. a2k _
Observing that ¢’ = -1 where 2 k- 1stands for the odd number, roots * of (3.3) can

be obtained as solutions to the equation

M
& e ]
[ ] — é‘j 21 [34)

L A

The solution of (3.4) can be presented in the form

S.t = ---I ) m.scr.ﬁe ) ep.t = _m.sc.:ﬂe ) S]Il(t;?k) + ---F &}.sc.:ﬁe ) CGS(-:;?k),

a2k -1) (3-5)
=~ 7 k=12.... 2"}
P T 2
Minimum order determination
The practical low-pass filter specification is determined by four parameters: Ay 0 4, ’F-‘. The

first step to design a filter with these parameters is to determine the minimum order of the filter
that meets this specification. The signal attenuation for the Butterworth approximation can be
expressed as follows

A@) = 20 Tog ,([H(j @)) =10 Tog s (1+ (—

54 (3.7)

seale

Applying (3.7) to the pass-band and stop-band edges results in the following system of two
equations

iy
A, =10 Togyy (1+ (2,

m:m.ie BB)
i 0,

A, =10 log {1+

scale

These equations can be rearranged as

£} ) .
(2 =10"% -1,

a].lsca!'s ':39:'

( @, )2-N _1p04 1

seals

Variables & and s« must be obtained from system (3.9). The order of the filter & is an

ﬂp, mp,ﬂj,mﬁ are

integer variable, and scaling frequency @cale s the real variable. Parameters
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. e . FF .
real and they are set in the specification (parameters ~ #°~ “were replaced with T

In general, system of equations (3.9) doesn't have a precise solution for those kinds of variables.
But it can be solved if integer variable & is replaced with the real variable X .
0l4
1077 -1
log(_ 57z —)
w=[x]=] L @12

2-log(—)

&

where brackets [] stand for the nearest integer exceeding < .

Cutoff frequency determination
1
7 @) =—=

2
Converting gain to decibels results in
Ay = =20 log o (|7 (j+ @) =10 log,, (2) ~ 348 (3.13)

Therefore, the natural cutoff frequency can be determined as a frequency where the signal loss
through the filter is approximately 3 dB.

&

A@,) =10 log, (1+ (—*") (3.16)

scale

@,

Ale,) =10 -log,, (1 + ( 3y (3.19)

seals
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3a

The abbreviation DTMF stands for “Dual Tone Multi Frequency”. and is a method of
representing digits with tone frequencies, m order to transmut them over an analog
communications network, for example a telephone line. During development, care was taken
to make use of all frequencies in the voice band. m order to reduce the demands placed on the
transnussion channel. In telephone networks, DTMF signals are used to encode dial trains
and other information. Although the method used until now to form dial trains from a
sequence of current pulses is stll the standard i Germany. the transmission time 1s too long
and places an unnecessary loading on the network. In addition. many telecommunications
services are only available with the use of tone dialing.

For DTMF encoding. the digits 0-9 and the characters A-D, */E and #/F are represented as a
combination of two frequencies:

[Frequenc [ 1209 Hz|1336 Hz| 1477 Hz| 1633 Hz
),'
697 Hz
770 Hz
852 Hz
941Hz | */E

(]

| |-
E=4 R= 0 8

oot

o
g|Nn|w|

#F

With this system, the column 1s represented by a frequency from the upper frequency group
(Hi-Group: 1209-1633 Hz). and the line by a frequency from the lower frequency group (Lo-
Group: 697-941 Hz). The tone frequencies have been chosen such that harmonics are
avoided. No frequency 1s the multiple of another. and in no case does the sum or difference of
two frequencies result in another DTMF frequency.

We'll now discuss the Goertzel Algorithm, an efficient method (in terms of multiplications) for
computing X[k| for a given k. The derivation of the algorithm, which is developed in OSB
Section 9.2, begins by noting that the DFT can be formulated in terms of a convolution.

N-1

Xk = Y znWik, Wy =e ¥
n=0
N1 ) '
= Z .r[n]”-’;"‘("\—“’. ”-;ku\ =2
n=>0

8
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V-1

- Y',rn s

= (et )i
l: n) + H lqu )

n=N

g2 : g y i _
Specifically. processing a signal x[n] through an LTI filter with impulse response Aln| = W ™ u[n)
and evaluating the result, yy .n]. at n = N will give the cor l‘l‘.\lH)lll“Il‘.L ,\'-|)ui||l DFT coefficient
X[k} = u[N]. This LTI filtering process is illustrated below.

r[uJ . /;-:n'. = H'\_“‘ u{u: . q;,{ni = .r‘[u: (FH'\'”‘ uf\n_)

Representing the filter by its z-transform, we have

x|n| — S,?‘:H”"\' e’ T d (N unln|,
and since
Hiz) = Yo Wy

mweb
1= Wik & A

- . wW; mk _=m
-l »—t -m - s—imt 1k (m+1)

= Lru:ll i N ‘: = .\..n.:n” N = ’

1 - Wyt=-1

) ”\’v

T 1= Wt

= 1
1 — Wyt

the filtering operation can be equivalently performed by the svstem

1

xin] — —_— — y[n],
! 1 1 —W = -1 {

with the associated fow graph depicted in OSB Figure 9.10.

Noting that

1 —Wgrz-1
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_ 1=-Wgz! 1
T 1-What 1 —wks-
e |-|s'§:-1
= 2x &

1 — (2cos 55%) 2! +z272

the filtering operation can also be equivalently performed by

]—H'f»:" (]
= o ) T o7 | Wk

x(n] —

with the associated flow graph depicted in OSB Figure 9.20,

Since we're only evaluating the output of this filter at yi[N], the multiplier —H"{'. need only
be used at time n = N, With this in mind, the algorithm requires N real multiplications
and a single complex multiplication to compute X[k] for a given k. This compares favorably
to N complex multiplications as required by the canonical DFT equation and approximately
N logy, N complex multiplications as required by the radix-2 FFT algorithms, when computing
X[k] for a given k. A final note about the Goertzel algorithm: since it is not restricted to
computing S:.__‘”' x[n]WEE for integer values of k, the algorithm has the convenient property
that it can efficiently compute X (e/*) for arbitrary choice of w,

When there is at least one pole In /H(z), It corresponds to an
IIR filter. The corresponding transfer function Is thus:

(9.17)

That Is, IIR filter is the general form of any discrete-time
LTI system.

It reallzes (2.4) In an explicit manner via decomposing it
into a palr of difference equations:

f'llll — 2:"'."[" 3] (9.18)
and \I "
win] = — Z apufre — K] 4 vin] (9.19)
Applying Inverse - transform, we get:
S
wln] = Zu, win — k] 4 x[n) (9.27)
k
and .
uln) =Y bewln — &) (9.28)
bt

which can be considered as an alternative direct form.
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Fig.9.9: Direct form of IIR filter
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Assume M =N ’ Since the same signals
winl,wln —11,--- ,wln — N|], are stored in the two chains of

storage elements, they can be combined to reduce the
memory requirement,

In general, the minimum number of delay elements
required is max(A, N ).

It is called canonic form because this implementation
involves the minimum number of storages.
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The symmetry (or antisymmetry) property of a linear-phase FIR filter can be exploited to
reduce the number of multipliers into almost half of that in the direct form implementations

Consider a length-7 Type 1 FIR transfer function with a symmetric impulse response

H(z)=HOl+ A1)z + B2z + H3]z” + 2]z + H1]2” + H0]z™° Rewriting H(z) in the form

H2) = H0)1+z Y+ A1)z + 27+ A[2](z™ + =2~ + A 3]z

L % il =1

e s P e P

/0] Ih[l] Ih[Z] H[3]
D D &

® A ssimilar decomposition can be applied to a Type 2 FIR transfer function

1z

® For example, a length-8 Type 2 FIR transfer function can be expressed as
HE@O=HOQ+z )+ HIE" + 2+ 2]z + 2 )Y+ 37 + 279

The corresponding realization is shown below:
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The Type 1 linear-phase structure for a length-7 FIR filter requires 4 multipliers, whereas a
direct form realization requires 7 multipliers The Type 2 linear-phase structure for a length-8
FIR filter requires 4 multipliers, whereas a direct form realization requires 8 multipliersSimilar
savings occurs in the realization of Type 3 and Type 4 linear-phase FIR filters with
antisymmetric impulse responses

7a

N=2

Since N is an even integer, we can consider computing X(k) by separating
x(n) into two N/2-point} sequences consisting of the even-numbered points
in x(n) and the odd-numbered points in x(n). With X(k) given by
N-1
X(k) = 3 x(mW7, k=01...,N—1 (6.9)

n=>0
and separating x(n) into its even- and odd-numbered points we obtain
X(k) + 2 x(mWy + Z‘I x(n)WiF
neven nodd

or with the substitution of variables n = 2r for nevenand n 2r 1 for

n odd,
{N/2)-1 (N/2)—1
X(k)y= 3 xQ@PW¥ 4+ 3 x(2r + Witk
r=0 r=0
(N/2)—1 (N/2)—-1
= Zﬂ xQ@r(WR)*+ Wk gﬂ x(2r + (W)™

But Wy : Wye since

W, = ¢ /M) —i2g/(N/2) Wase

=e

Consequently Eq. (6.10) can be written as

(N/2)-1 (N/2)-1
X(k) = Eo xrWHe + Wi g x(2r + DWi
= T

= G(k) + WYH(k)
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(7)o > X(7)
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Fig. 6.7 Flow graph of complete decimation-in-time decomposition of an
eight-point DFT computation.

according to Eq. (6.11) for an eight-point sequence, i.e., for N = 8. In this
figure we have used the signal flow graph conventions that were introduced
in Chapter 4 for representing difference equations [5,7). That is, branches
entering a node are summed to produce the node variable. When no coeffi-
cient is indicated, the branch transmittance is assumed to be one. For other
branches, the transmittance of a branch is an integer power of Wy. Thus
we note in Fig. 6.3 that two four-point DFTs are computed, with G(k)
designating the four-point DFT of the even-numbered points and H(k)
designating the four-point DFT of the odd-numbered points. X(0) is then
obtained by multiplying H(0) by Wy and adding the product to G(0).
X(1) is obtained by multiplying H(1) by Wy and adding that result to G(1).
For X(4) we would want to multiply H(4) by Wy and add the result to G(4).
However, since G(k) and H(k) are both periodic in k with period 4, H(4) =
H(0) and G(4) = G(0). Thus X{(4) is obtained by multiplying H(0) by Wy
and adding the result to G(0).

8a

The discrete Fourier transform can be found using
N-1

X (k)= x(mywy

n=0

Where N= 2, 4,8, 16,... and

Y

E=0102 s N-1

Wy =

X (k) can be expressed as

N/2-1 N-1

X k)= Z XMW + Z ,\'()I)W’;f"
n=0 n=N/2
Ni2-1 N2 -
X(k)=Y x(mWy+ > x(n+ N/ 2)wg™ D
n=0 n=0
Ni2-1 L N2
XY= x(mW +Wy Y x(n+ NI 2)Wy
n=0 n=0
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Then
No2-t
X(h= Y x(W +(=0*" Y x(n+ N/ 2l
— —_—
el well

If k= 2mor an even number

N+

X(2m)= i(uu)ou;m Ni)wi™
N2

XQmy= 3 almywy,
P 2

.l

x(0)

X(0)
x{1) \ / X X_axm
L KA T

x(3) " 7\ X(6)

X(1)

D8 '”‘>( Xﬁzéz

x(7) 7
1 -1 1 ( )
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Input Data  Index Bits Reversal Output data
index Bits index
n k
0 000 000 0
1 001 100 =
2 010 010 2
3 011 110 6
B 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

_ PGIeJQT
It is clear that

If o= 0. The imaginary axis (s =j Q) in the s plane map into the
unity circle (z= /27 in the z-plane.

If o< 0, the left hand plane in the s plane map into the inside of
the unity circle in the z-plane.

On the assumption that the poles of the analogue filter are
distinct, we can wm‘re

H,(s)= Z

k=13 —

pi are the poles of 'rhe. analogue filter and ¢;s are the
coefficients of the partial expansion. Consequently

N
h (1) =2 c e
k=1

If we sample the analogue impulse response, we get

A.'
h(n)=h,(nT)=> c,e""
k=1
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So the system function of the IIR filter
H,(2) :Zh(n):'”
n=0

N =
SN
k=1 n=0
For p, <0
N c.
- .3
Hl[.J_;1—9.1"”:'1

We observe that the digital filter has poles at

z,=e?  k=12...N

102 | i X(k) = DFT{x(n)} and Y (k) = DFT{y(n)}, then 6
X (k)Y (k) =DFT {{z(n)} ® {y(n)}}
Here, ® stands for circular convolution defined by
N-1
{z(n)} ® {y(n)} = Z z(m)y((n —m)mod N ).
m=0
'p_'F'T {{1 n)} ® {y(n)}}
= Z { Y 'J(IHHN n—m)mod N 1] Whn
{z(n)} 5 {u(m)}
= Z { ‘] ’,, y((n —m)mod \‘]H'"“} x(m)
Y (k)yWk
N-1
= Y(k) ) a(m)W*™ = X (k)Y (k)
m=
X(k)
10. | close all; 2
b clear all;

xn=input('Enter the sequence x(n)’); %Get the sequence from user
In=length(xn); %find the length of the sequence

xk=zeros(1,In); %initialize an array of same size as that of input sequence
ixk=zeros(1,In); %initialise an array of same size as that of input sequence
%code block to find the DFT of the sequence

for k=0:In-1
for n=0:In-1
Xk(k+1)=xk(k+1)+(xn(n+1)*exp((-i)*2*pi*k*n/In));
end
end
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