INTERNAL ASSESSMENT TEST1

Date: 30/08/2017
Marks: 40
Subject & Code: Operating System – 15EC553
Sem & Sec: 5th A,B,C
Name of faculty: Bivas Bhattacharya
Time: 11:30am - 1:00pm

Note: Answer FIVE full questions, selecting any ONE full question from each part.

<table>
<thead>
<tr>
<th>Part</th>
<th>Question</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a. Is OS necessary for a computing system? Explain.</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>b. Explain 3 layer model for operation of OS with each layer example.</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>a. Why there are different flavors of OS available even from same vendor?</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>b. What are considered as resources to be managed by OS?</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>c. What is meant by overhead of using OS?</td>
<td>2</td>
</tr>
<tr>
<td>PART 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>a. How an executable code be put in different parts of RAM wherever space is available?</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>b. Explain how stack segment is used for function call.</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>a. What are the segments required for execution of a program and for what purposes those are used?</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>b. Why security and protection are concern of OS?</td>
<td>3</td>
</tr>
<tr>
<td>PART 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a. If a program is executing in eternal loop, how OS can snatch control from it?</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>b. Why two modes of CPU operations are required for a system?</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>c. What is software interrupt?</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>a. Why smaller size cache is required when relatively large amount of RAM is available?</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>b. What are the components of “State of CPU”?</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>c. How software interrupt is different from hardware interrupt?</td>
<td>3</td>
</tr>
<tr>
<td>PART 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>a. Why Memory Protection is required and how processor supports to achieve that?</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>b. What is I/O device? Why DMA based I/Os are better?</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>a. Explain advantages and concerns of Multiprogramming System.</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>b. What are CPU-bound and I/O-bound programs?</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>c. What is Round-Robin Scheduling?</td>
<td>2</td>
</tr>
<tr>
<td>PART 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>a</td>
<td>For reasonably big task, which system will it take more time from start to end – old technique of batch processing or modern technique of time-sharing?</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Swapping of page will be more in which system – batch processing or time-sharing?</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>Explain with example the hard and soft Real-Time System.</td>
</tr>
<tr>
<td>10</td>
<td>a</td>
<td>Multi-programming or time-sharing enables more than a single process to apparently execute simultaneously. How is this achieved on a single processor?</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>What are advantage and disadvantage of distributed operating system?</td>
</tr>
</tbody>
</table>
1. a) Is OS necessary for a computing system? Explain.

ANS:
* No.
* For small system with very less processing
* For system with single task
* Less complicated system with super loop.

b) Explain 3 layer model for operation of OS with each layer example.

ANS:
* Interaction of OS layer with Hardware layer and Application layer.
* Example of each layer

2. a) Why there are different flavors of OS available even from same vendor?

ANS:
* Two major goals of efficient usage and user convenience are sometime conflicting
* Goals for each flavor are different
* For different types of customers priorities are different (GUI / Command Line)

b) What are considered as resources to be managed by OS?

ANS:
* CPU, Memory, I/O
c) What is meant by overhead of using OS?

ANS:
* Resources required for execution of OS like CPU and Memory.
* These resources are to manage user tasks
* These are overhead as they are not being utilised for user process

3. a) How an executable code be put in different parts of RAM wherever space is available?

ANS:
* Compiler produces executable which are not for absolute location
* Code is with a relative location
* Given a reference location Loader compute the absolute location
* Loader can load in the space available in RAM

b) Explain how stack segment is used for function call.

ANS:
* On function call location of calling function is stored in stack
* Function arguments are put in some location in stack
* Local variables of the called function are created on stack
* After execution of function returns to the calling function as in stack
4. a) What are the segments required for execution of a program and for what purposes those are used?

ANS:
* Text segment – for code
* Data segment – for initialized data
* BSS segment – for uninitialized data like global variable
* Heap segment – for dynamic memory allocation
* Stack segment – for function call and interrupt processing

b) Why security and protection are concern of OS?

ANS:
* OS need to protect user files and operations from others
* Protection is to guard from other user of system
* Security is to guard from externer intervener

5. a) If a program is executing in eternal loop, how OS can snatch control from it?

ANS:
* Interrupts are handled by OS and on each interrupt OS get an opportunity
* Hardware interrupts like timer interrupts provide the opportunity to snatch control
b) Why two modes of CPU operations are required for a system?

ANS:
* OS need some extra control to manage user tasks
* User having all control can be misused and can be catastrophic
* So CPU has two modes – User mode and Kernel mode
* Privileged instructions can be executed only in Kernel mode

c) What is software interrupt?

ANS:
* Software interrupts works similar like hardware interrupts
* But it is instruction to be called by program

6. a) Why smaller size cache is required when relatively large amount of RAM is available?

ANS:
* Cache is faster than RAM helping quick operation
* Cost of cache memory is high

b) What are the components of “State of CPU”?

ANS:
* GPRs, PSW, PC
c) How software interrupt is different from hardware interrupt?

ANS:

* It is not triggered by any external event
* It need to be called by program
* There is no condition of nested software interrupts

7. a) Why Memory Protection is required and how processor supports to achieve that?

ANS:

* For protection and isolation from other process
* One process should not access memory associated with other process
* For each process processor is informed with memory bound for it
* Processor check the boundary limit for each access
* On violation is raise an interrupt

b) What is I/O device? Why DMA based I/Os are better?

ANS:

* All interface devices associated with processor are I/O devices
* With DMA all data are transferred from source to destination without intervention of CPU
* CPU remains free during the data transfer
* The CPU resource can be utilized during data transfer
8. a) Explain advantages and concerns of Multiprogramming System.

ANS:
* CPU and I/O resource can be utilized in parallel
* Better overall performance
* Better turnaround / response time
* Intervention of one program to other program need to be taken care
* DMA and privileged mode operation support is required

b) What are CPU-bound and I/O-bound programs?

ANS:
* Where computation is more than I/O operations are called CPU-bound program
* Where I/O operations are more than computation are called I/O-bound program

c) What is Round-Robin Scheduling?

ANS:
* Scheduling of processes in a circular sequential way
* Each scheduled for a fixed time slice

9. a) For reasonably big task, which system will it take more time from start to end – old technique of batch processing or modern technique of time-sharing?

ANS:
* Time-sharing will take more time as it share with other process
* In Batch processing only one task is in control, so minimum time is required
b) Swapping of page will be more in which system – batch processing or time sharing? Explain.

ANS:

* In Batch processing only one task is in control, so swapping is minimum
* In time-sharing as other processes take CPU in between, swapping is more

c) Explain with example the hard and soft Real-Time System.

ANS:

* Hard Real-Time – Stringent time constrain otherwise catastrophic failure. Space launcher
* Soft Real-Time – Constrain is there but failure is tolerable. Video playing

10. a) Multi-programming or time-sharing enables more than a single process to apparently execute simultaneously. How is this achieved on a single processor?

ANS:

* One process runs on CPU at a time
* After certain time process is removed and another program is given CPU
* Within some time interval all process make progress, so it gives feel of simultaneity
* While removing processor state is saved and while scheduling again those are restored
b) What are advantage and disadvantage of distributed operating system?

ANS:

* Computation speed up due to availability of more resources
* Overall reliability increases
* Communication overhead for operations
* System is more complex