

PESIT Bangalore South Campus

Hosur road, 1km before Electronic City, Bengaluru -100

Department of Computer Science and Engineering

COURSE INFORMATION

SUBJECT: Computer Organization (15CS34)

FACULTY: Mrs.Shanthala P.T and Mrs. Jyothi U Desai

No. of Sessions:56

Objectives:

To learn about the basic organizational aspects of computers, machine instructions, addressing modes, I/O Organization, standard interfaces, working of dynamic memories, static memories ,number systems, representations ,design and working of control unit .

- Understand the basics of computer organization: structure and operation of computers and their peripherals.
- Understand the concepts of programs as sequences or machine instructions.
- Expose different ways of communicating with I/O devices and standard I/O interfaces.
- Describe hierarchical memory systems including cache memories and virtual memory.
- Describe arithmetic and logical operations with integer and floating-point operands.
- Understand basic processing unit and organization of simple processor, concept of pipelining and other large computing systems.

Pre-requisites:

A student is expected to know about basic hardware and number system in computer science.

Sessio n#	Module & Chapter #	Topic to be covered	% of Portions covered Cumulative	
1		Basic operational concepts: Bus structures:		
2	Module 1	Performance: - processor clock, Basic performance equation .		
3	Chapter 1 & 2	er 1 & 2 Clock rate, performance measurement.		
4	Basic Structures of Computers & Machine	Machine Instructions and Programs: Memory locations and addresses: : byte addressability, big-endian and Little-endian assignments, word Alignment, accessing Numbers, characters, and Character Strings	ıt,	
5	instructions and programs .	Memory Operations.		

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100

Department of Computer Science and Engineering

6		Instructions and instructions sequencing:	
		Register transfer notation, assembly language notation, basic instruction types,	
		instruction execution and Straight-Line Sequencing, branching, condition codes,	
		generating memory addresses.	
7	Textbook 1: Ch 1:	Addressing modes: implementations of variables and constants,	
	1.3, 1.4, 1.6.1, 1.6.2,	indirection and pointers.	
8	1.6.4, 1.6.7. Ch 2:	Assembly language: assembler directives, assembly and execution of	
		programs	
9	2.2 to 2.10, 2.12	Basic input and output Operations,	
10		Stacks and Queues,	
11		Subroutines : Subroutine nesting & processor stack, Parameter passing,	
		the Stack frame.	
12		Additional instructions: logic instructions, shift & rotate instruction,	
		multiplication & division.	
		Encoding of machine instruction.	
13-15		Accessing I/O devices:	
13-13		Interrupts: Interrupt hardware, enabling & disabling interrupts, Handling	
	Module 2	multiple devices,	
16		Controlling device requests, exceptions;	
17	Chapter 4	DMA: bus arbitration.	
18-19	Input/Output	Buses : Synchronous and asynchronous buses, discussion.	
20-21	Organization	Interface circuits: Parallel & Serial port:	
22	Textbook 1: Ch 4:		
22	4.1, 4.2: 4.2.1 to	Std IO interfaces: PCI and SCSI bus	40%
23	4.2.5, 4.4 to 4.7.	USB	
24-28		Basic concepts:	
24-20	Module 3	•	
	Chapter 5	Semiconductor RAM memories: Internal organization, Static memories,	
		synchronous & asynchronous DRAM's, structure of large memories,	
20	The memory system	memory system considerations, Rambus memory	
29		Read only memories: ROM, PROM, EPROM and EEPROM.	
	Textbook 1: Ch 5:	Flash memory; speed, size and cost.	
30	5.1 to 5.4,	Cache memories: Mapping functions, Replacement algorithms.	
	5.5.1, 5.5.2,		
31	5.6, 5.7, 5.9	performance consideration: interleaving, Hit rate and Miss Penalty	60%
32		Caches on the processor Chip, other enhancements	
33		Virtual memories: address translation.	
34		Secondary storage: magnetic hard disks, optical disks, magnetic tape systems	
•	l		

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100

Department of Computer Science and Engineering

35-40	Module 4	Arithmetic: Numbers, Arithmetic Operations and Characters,		
	<u>Chapter 6</u> :	Addition and subtraction of signed numbers:		
	Arithmetic	Fetching a word from memory , storing a word in memory;		
41	Textbook 1: Ch 2:	Design of fast address: carry-look ahead addition.		
42-43	2.1, Ch 6: 6.1	Multiplication of Positive numbers:		
	to 6.7	signed operand multiplication: booth algorithm	80%	
44		Fast multiplication: bit-pair recording of multipliers carry-save addition of		
		summands. integer division.		
45		Floating point numbers and operations:		
		IEEE standard for floating point numbers, arithmetic operations on floating		
		point numbers, guard Bits and truncation, implementing floating point		
		operations.		
46	Module 5	Some fundamental concepts: register transfers, performing an arithmetic and logic		
		operations, fetching word from memory, storing a word in memory		
47	<u>Chapter 7,8,9,12</u>	Execution of a complete instruction: branch instructions		
48	Basic processing	Multiple bus organization,		
	unit, Pipelining,	hard-wired control: a complete processor		
49-50	Embedded Systems &	Micro programmed Control: micro instructions, microprogramming sequencing,		
	Large Computer	wide branch addressing, micro instruction with next-address field, prefetching		
	Systems	microinstructions, emulation		
51	Textbook 1: Ch 7: 7.1 to 7.5, Ch 9:9.1 to 9.3,	Basic Concepts Of Pipelinig: Role of Cache Memory, Pipeline Performance	100%	
52	Ch 12:12.3	Examples of Embedded Systems: Microwave Oven, Digital Camera, Home Telemetry		
		Processor Chips For Embedded Applications		
53		Simple Microcontroller: Parallel I/O ports, Serial I/O Interface, Counter/Timer,		
		Interrupt Control Mechanism		
54		Forms of Parallel Processing: Classification of Parallel Structures, Array		
		Processors		
		The Structure Of General Purpose Multiprocessors		
55-56				

PESIT Bangalore South Campus

Hosur road, 1km before Electronic City, Bengaluru -100

Department of Computer Science and Engineering

Course outcomes:

After studying this course, students will be able to:

- Acquire knowledge of The basic structure of computers & machine instructions and programs, Addressing Modes, Assembly Language, Stacks, Queues and Subroutines.
 - Input/output Organization such as accessing I/O Devices, Interrupts.
 - Memory system basic Concepts, Semiconductor RAM Memories, Static memories,

Asynchronous DRAMS, Read Only Memories, Cache Memories and Virtual Memories.

• Some Fundamental Concepts of Basic Processing Unit, Execution of a Complete Instruction,

Multiple Bus Organization, Hardwired Control and Micro programmed Control.

- Pipelining, embedded and large computing system architecture.
- Analyse and design arithmetic and logical units.
- Apply the knowledge gained in the design of Computer.
- Design and evaluate performance of memory systems
- Understand the importance of life-long learning

		Publication Information
Book Type	Titlle & Author	Edition
Text Book	Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5th Edition, Tata McGraw Hill, 2002.	5 th
Reference Books:	William Stallings: Computer Organization & Architecture, Pearson, 2015.	9տ Edition,